

https://razi.edu.ly/rmj/index.php/hm

Original article

Prevalence, Biofilm Formation, and Antimicrobial Resistance of Uropathogens Isolated from Patients with Urinary Tract Infections in Misurata, Libya

Dania ELhassan ¹, Mohanad Alwashaish ¹, Salma Lajhar ², Aya Aldiab ¹, Khadija Safar ¹

¹Depatment of Biomedical Science, Misurata University, Misurata, Libya ²Department of Laboratory Medicine, College of Medical Technology, Derna, Libya Corresponding email. salmaaibsais.lajhar@alumni.griffithuni.edu.au

Abstract

Urinary tract infections (UTIs) are among the most prevalent bacterial infections, affecting all ages and ranging from uncomplicated cystitis to severe pyelonephritis. This study was conducted to determine the prevalence of uropathogens causing urinary tract infections (UTIs), their capacity for biofilm formation, and their antimicrobial resistance patterns in Misurata, Libya. A cross-sectional study was conducted at two medical centers in Misurata. A total of 40 patients clinically diagnosed with UTIs were included. Patient ages ranged from 5 to 88 years, and the majority of them were female (80%). All isolates were identified using standard microbiological techniques. Identified bacteria were subjected to biofilm detection using the Congo Red Agar (CRA) method, and antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Staphylococcus aureus (37.5%) and E. coli (32.5%) were the most predominant bacteria among UTI patients, followed by Coagulase-negative staphylococci (CONS) (15%), P. aeruginosa (7.5%), and Klebsiella spp. (5%) and Streptococcus spp. (2.5%). Biofilm formation on Congo Red Agar was observed for 40% of the isolates, with the highest frequency in P. aeruginosa (2/3; 66.7%), followed by S. aureus (8/15; 53.3%) and Klebsiella spp. (1/2; 50%). Antimicrobial susceptibility testing revealed variable resistance patterns, particularly to amoxicillin, nitrofurantoin, and ceftriaxone. Multidrug resistance was detected in several isolates, including E. coli, S. aureus, Pseudomonas spp., Klebsiella spp., and CONS. Although the sample size was small, the detection of pathogenic bacteria with biofilm-forming capacity and multidrug resistance represents a significant clinical concern, underscoring the urgent need for ongoing antimicrobial resistance surveillance. Further studies with larger sample sizes and molecular characterization of resistance and biofilm-associated genes will provide deeper insight into the epidemiology of uropathogens in Libya and guide effective treatment strategies for UTI management.

Keywords. Urinary Tract Infections (UTIs), Uropathogens, Biofilm Formation, Antimicrobial Resistance (AMR), Multidrug Resistance (MDR), Misurata.

Received: 26/07/25 Accepted: 25/09/25 Published: 06/10/25

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0

Introduction

Urinary tract infections (UTIs) are among the most prevalent bacterial infections, affecting all ages and ranging from uncomplicated cystitis to severe pyelonephritis [1]. It has been estimated that approximately 150 million people worldwide are affected by UTIs each year, and the estimated incidence of UTIs in the North Africa and Middle East (MENA) region in 2021 was 25,815,054 cases [2].

Studies have shown that the persistence and recurrence of UTIs are often complicated by various factors, including biofilm formation. Biofilm formation is a key factor in the persistence, recurrence, and antibiotic resistance of UTIs [1, 3-5]. Biofilms are formed when free-floating bacterial cells attach to a surface and become enclosed within a self-produced extracellular polymeric matrix. The structural and physiological characteristics of the biofilm community contribute to evading host immune responses and their resistance to antimicrobial agents [1, 5]. Furthermore, the ability to form biofilms represents a significant challenge, particularly in medical devices such as urinary catheters, which leads to persistent infections that are difficult to treat [1, 6, 7]. The National Institutes of Health (NIH) reported that biofilms are responsible for approximately 65% and 80% of all microbial infections and chronic infections, respectively [2].

In Libya, urinary tract infections (UTIs) represent a significant public health concern due to the growing burden of antimicrobial resistance and the contamination of urinary catheter devices, which serve as reservoirs for biofilm-producing pathogens [8]. Determining the prevalence of antimicrobial resistance profiles and the capacity for biofilm formation among UTI-causing pathogens is essential for guiding empirical therapy. This study aimed to determine the prevalence of bacterial pathogens causing urinary tract infections (UTIs), their capacity for biofilm formation, and their antimicrobial resistance patterns in Misurata, Libya.

https://razi.edu.ly/rmj/index.php/hm

Materials and Methods

Study Design

A cross-sectional study was conducted from May 2024 to June 2024 to investigate the prevalence, biofilm-forming capacity, and antimicrobial susceptibility profiles of urinary pathogens.

Study Population

A total of 40 midstream urine samples were collected from patients attending two medical centers in Misurata. Patient ages ranged from 5 to 88 years. Informed consent was obtained from all participants prior to sample collection.

Sample Collection and Transport

Aseptically collected urine samples were immediately transported to the microbiology laboratory for processing. Samples were inoculated onto suitable culture media (MacConkey and Blood Agar) within one hour of collection and incubated at 37 °C for 24 hours.

Bacterial identification

A bacterial load greater than 10⁵ CFU/ml was considered significant bacteriuria. Bacterial colonies were identified using standard microbiological techniques such as Gram stain and biochemical analyses.

Biofilm detection test

The bacterial isolates were cultured on Congo red agar (CRA) for the detection of biofilm production. Briefly, the media was prepared by adding 0.8 g of Congo red and 36 g of sucrose to 1 L of Brain Heart Infusion broth (Oxoid). The isolates were subcultured on CRA and subsequently incubated for 24 h at 37 °C. The production of black colonies was used to differentiate biofilm from non-biofilm-producing isolates.

Antimicrobial susceptibility test

Bacterial suspension was prepared and compared to a 0.5 McFarland standard prior to inoculation on Muller-Hinton agar, and then the antibiotic discs were added and incubated for 24 hours at 37°C. The diameter of the inhibition zone around each of the antibiotic discs was measured. Results were reported as "susceptible, intermediate," or "resistant" according to CLSI guidelines. Multidrug resistance (MDR) was defined as resistance to at least one agent in three or more antimicrobial categories [9].

Statistical analysis

Data were analysed using Microsoft Excel (version 2019). Given the small number of isolates, the analysis was limited to descriptive statistics, which are presented as frequencies and percentages. All figures were generated using Microsoft Excel.

Results and Discussion

A total of 40 midstream urine cultures were examined for bacterial growth, biofilm formation, and antimicrobial susceptibility testing. All collected samples showed bacterial growth, indicating bacteria as the main cause of UTIs. This result is consistent with other studies across diverse populations and geographic regions [2, 5, 6].

The distribution of cases according to gender revealed that out of 40 samples, 32 (80%) were females and 8 (20%) were males (Figure 1). This is in agreement with previous studies that demonstrated that UTI is more prevalent in females than in males [5, 10, 11]. Anatomical differences, such as short urethral anatomy and other risk factors—including poor genital hygiene, sexual activities, pregnancy, insufficient hydration, delayed urination, and inadequate sanitation enable bacterial colonization of the urinary tract [5, 11].

The highest proportion of UTI cases (50%) was found in the age group 26–46 years, followed by 5–25 years (32.5%), 47–67 years (15%), and 68–88 years (2.5%) (Figure 2). This distribution widely aligns with reports indicating the prevalence of UTI among adolescent and middle-aged adults, particularly women in their reproductive years [5, 11]. However, the very low frequency observed in the elderly is in contrast with other studies. This could be due to a small sample size (n = 40), sampling bias, or underdiagnosis in older adults [5, 12].

https://razi.edu.ly/rmj/index.php/hm

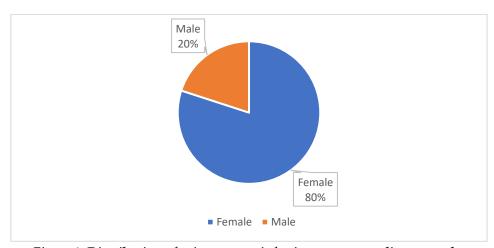


Figure 1. Distribution of urinary tract infection cases according to gender

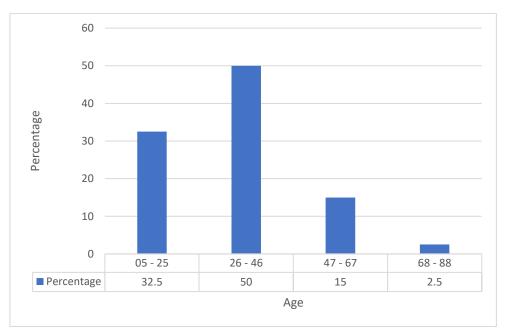


Figure 2. Distribution of urinary tract infection cases according to age groups

Analysis of urine samples from UTI patients (Figure 3) revealed that *S. aureus* (37.5%) and *E. coli* (32.5%) were the predominant bacteria. Other isolated pathogens included *coagulase-negative staphylococci* (15%), *P. aeruginosa* (7.5%), and *Klebsiella spp*. (5%), and *Streptococcus spp*. (2.5%). Similar findings have been reported in previous studies, where *E. coli* was identified as the predominant Gram-negative pathogen and *S. aureus* as the predominant Gram-positive pathogen associated with urinary tract infections [13, 14]. However, these results differ from the majority of published data, which generally identify *E. coli* as the leading cause of UTIs [5, 15, 16]. The higher prevalence of *S. aureus* in this study compared to the typically dominant *E. coli* could be attributed to the differences in the study population, epidemiological trends in Misurata in comparison to other populations, or risk factors such as hospitalization, catheterization, and other medical interventions.

Among the 40 bacterial isolates tested for biofilm formation on CRA (Figure 4), *P.aeruginosa* (2/3; 66.6%) followed by *S. aureus* (8/15; 53.3%) were the highest biofilm-forming isolates (Table 1). This is consistent with published literature describing *P. aeruginosa* and *S. aureus* as strong biofilm formers [17-19]. In *Klebsiella* spp, *CONS*, and *E. coli*, the prevalence of biofilm-forming capacity was (1/2; 50%), (2/6; 33.3%), and (3/13; 23%), respectively. None of the *Streptococcus* spp. isolates produced biofilm (0/1; 0%). These findings are consistent with other studies suggesting that biofilm-forming ability varies among pathogens [20, 21]. This variability could be attributed to factors such as differences in isolate genomes, a low number of isolates of some species, methodological cut-offs for defining "positive"

https://razi.edu.ly/rmj/index.php/hm

biofilm producers, or the clinical origin of the isolates [20, 21]. In addition, the results presented in this study should be interpreted with caution due to the small number of isolates.

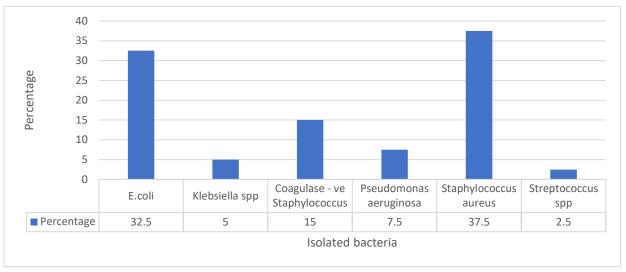


Figure 3. Percentage distribution of bacterial species isolated from urine samples of UTI patients

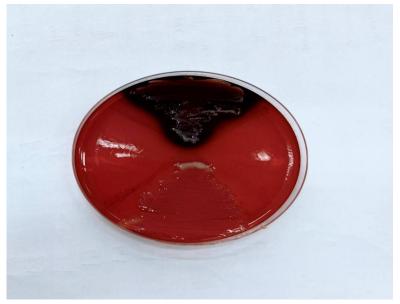


Figure 4. Detection of biofilm production using Congo red agar (CRA)

Table 1. Biofilm production by bacterial isolates from urinary tract infections (UTIs)

Bacterial species	No. of isolates	Biofilm producers n (%)	Non-producers n (%)				
P. aeruginosa	3	2 (66.6%)	1 (33.3%)				
S. aureus	15	8 (53.3%)	7 (46.7%)				
Klebsiella spp.	2	1 (50%)	1 (50%)				
Coagulase-negative staphylococci (CONS)	6	2 (33.3%)	4 (66.7%)				
E. coli	13	3 (23%)	10 (77%)				
Streptococcus spp.	1	0 (0%)	1 (100%)				
Total	40	16 (40%)	24 (60%)				
Gram-negative isolates	18	6 (50%)	12 (50%)				
Gram-Positive isolates	22	10 (45.5%)	12 (54,5%)				

https://razi.edu.ly/rmj/index.php/hm

A total of 40 bacterial isolates, including 18 Gram-negative and 22 Gram-positive isolates, were tested for antimicrobial susceptibility according to CLSI guidelines (Table 2). Gram-negative bacteria, including *E. coli*, exhibited moderate resistance to azithromycin (30.8%), while showing lower resistance to amoxicillin and nitrofurantoin (23.1% each), ceftriaxone (7.7%), and ciprofloxacin (0%). *Klebsiella* spp. (n=2) demonstrated resistance to amoxicillin and azithromycin (100% each), and 50% resistance to nitrofurantoin, ciprofloxacin, and tetracycline. *Pseudomonas* spp. (n=3) demonstrated high resistance to amoxicillin and ceftriaxone (66.7% each) in the current study. These findings are consistent with the broader picture of high and variable resistance to older and commonly used antibiotics, such as beta-lactams [5, 14, 22, 23].

Gram-positive bacteria included 22 isolates. *S. aureus* (n=15) demonstrated high resistance to nitrofurantoin (60%) and ceftriaxone (53.3%), while imipenem remained relatively effective (13.3% resistance). CONS isolates (n=6) exhibited high resistance to nitrofurantoin (66.7%) but moderate resistance to levofloxacin (33.3%), while *Streptococcus* (n=1) showed resistance only to amikacin. Similarly, other Libyan studies reported high resistance rates, particularly to penicillin and cephalosporins [14, 23]. In addition, resistance to ceftriaxone (53.3%) is lower than the reported rate in previous Libyan studies, where ceftriaxone resistance reached 90% indicating that resistance remains a major concern across the country [14]. Furthermore, resistance of most isolates to nitrofurantoin suggests that nitrofurantoin resistance among uropathogens may be emerging as a concern in the present study compared to earlier Libyan data [14, 23]. Resistance to nitrofurantoin, a widely prescribed first-line oral agent for UTIs, may compromise its effectiveness for the treatment of UTIs.

Multidrug resistance (MDR), defined internationally as resistance to ≥3 antibiotic classes, was detected in 32.5% (13/40) of all uropathogens isolated in this study [9]. Among the Gram-negative isolates, *Escherichia coli* showed MDR in approximately 23% (3/13) of cases, *Klebsiella spp*. in 50% (1/2), and *Pseudomonas spp*. in 33% (1/3) of isolates. For the Grampositive group, *S. aureus* showed MDR in 40% (6/15) of isolates, while *CONS* exhibited MDR in 33% (2/6). The presence of these MDR pathogens highlights growing national and regional concerns regarding antimicrobial resistance in uropathogens. Furthermore, among the MDR isolates, 76.9% (10/13) had biofilm-forming capacity as shown on Congo Red agar. This finding is consistent with previous studies, where a strong association between biofilm formation and multidrug resistance was observed [5, 19, 20, 24].

Conclusion

The study provided insight into the bacterial etiology of UTIs, their prevalence, capacity for biofilm formation, and their antimicrobial resistance patterns in Misurata, Libya. *S. aureus* and *E. coli* were the most commonly isolated pathogens, followed by CoNS, *P. aeruginosa*, *Klebsiella* spp., and *Streptococcus* spp. The detection of biofilm production among clinically significant isolates underscores the challenge of persistent and recurrent infections. In addition, the observed resistance to commonly prescribed antibiotics raises serious concerns regarding their therapeutic effectiveness. These findings highlight the urgent need for establishing antimicrobial stewardship programs and reinforce the importance of continuous monitoring of resistance patterns to improve patient outcomes. Future studies with larger sample sizes and molecular characterization of resistance and biofilm-associated genes will provide deeper insights into the epidemiology of uropathogens in Libya.

https://razi.edu.ly/rmj/index.php/hm

Table 2. Antimicrobial resistance rates (%) among Gram-negative and Gram-positive bacterial isolates

Antibiotic	Antibiotic Class	E. coli (n=13)		Klebsiella spp. (n=2)		Pseudomonas aeruginosa (n=3)		S. aureus (n=15)		CONS (n=6)			Streptococcus spp. (n=1)						
		S	I	R	S	I	R	S	Ι	R	S	I	R	S	Ι	R	S	I	R
Amoxicillin	β-lactam, Penicillin class	69.2	7.7	23.1	0	0	100	0	33.3	66.7	40	20	40	50	16.7	33.3	100	0	0
Nitrofurantoin	Nitrofuran	61.5	15.4	23.1	50	0	50	33.3	66.7	0	20	20	60	33.3	0	66.7	100	0	0
Ceftriaxone	3rd generation Cephalosporin	84.6	7.7	7.7				33.3	0	66.7	26.7	20	53.3	83.3	16.7	0	100	0	0
Azithromycin	Macrolide	69.2	0	30.8	0	0	100	33.3	66.7	0	20	33.3	46.7	0	100	0	100	0	0
Levofloxacin	Fluoroquinolone	53.8	30.8	15.4				33.3	33.3	33.4	60	20	20	16.7	50	33.3	100	0	0
Ciprofloxacin	Fluoroquinolone	84.6	15.4	0	50	0	50	100	0	0									
Imipenem	Carbapenem				100	0	0		1		60	26.7	13.3		1		1	1	
Tetracycline	Tetracycline				50	0	50		1				1		1		1	1	
Amikacin	Aminoglycoside													66.7	0	33.3	0	0	100

Note: "--" indicates that the antibiotic was not tested for the corresponding isolate. S = sensitive, I = intermediate, R = resistant

https://razi.edu.ly/rmj/index.php/hm

Conflicts of Interest

All authors declare no conflict of interest.

Funding Statement

This research received no external funding.

References

- 1. Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, et al. Biofilm lifestyle in recurrent urinary tract infections. Life. 2023 Jan;13(1). doi: 10.3390/life13010210.
- 2. Amiri F, Safiri S, Aletaha R, Sullman MJM, Hassanzadeh K, Kolahi AA, et al. Epidemiology of urinary tract infections in the Middle East and North Africa, 1990–2021. Trop Med Health. 2025 Jan 21;53(1):16. doi: 10.1186/s41182-025-00598-8.
- 3. Katongole P, Nalubega F, Florence NC, Asiimwe B, Andia I. Biofilm formation, antimicrobial susceptibility and virulence genes of uropathogenic Escherichia coli isolated from clinical isolates in Uganda. BMC Infect Dis. 2020 Jul 29;20(1):453. doi: 10.1186/s12879-020-05186-1.
- 4. Mahshouri P, Alikhani MY, Momtaz HE, Doosti-Irani A, Shokoohizadeh L. Analysis of phylogroups, biofilm formation, virulence factors, antibiotic resistance and molecular typing of uropathogenic Escherichia coli strains isolated from patients with recurrent and non-recurrent urinary tract infections. BMC Infect Dis. 2025 Mar 21;25(1):267. doi: 10.1186/s12879-025-09647-6.
- 5. Maione A, Galdiero E, Cirillo L, Gambino E, Gallo MA, Sasso FP, et al. Prevalence, resistance patterns and biofilm production ability of bacterial uropathogens from cases of community-acquired urinary tract infections in South Italy. Pathogens. 2023 Apr;12(4). doi: 10.3390/pathogens12040554.
- 6. Pinto H, Simões M, Borges A. Prevalence and impact of biofilms on bloodstream and urinary tract infections: a systematic review and meta-analysis. Antibiotics (Basel). 2021 Jul;10(7). doi: 10.3390/antibiotics10070789.
- 7. Gomila A, Carratalà J, Eliakim-Raz N, Shaw E, Tebé C, Wolkewitz M, et al. Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: the COMBACTE-MAGNET RESCUING study. Antimicrob Resist Infect Control. 2019 Dec;8:198. doi: 10.1186/s13756-019-0652-x.
- 8. El Magrahi HAA, Khalil MB, Taboun MB, Bleha Z. Study of risk factors for catheter-associated urinary tract infection. AlQalam J Med Appl Sci. 2022 Aug;3:411–8.
- 9. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268–81. doi: 10.1111/j.1469-0691.2011.03570.x.
- 10. Prakash D, Saxena RS. Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of Meerut city, India. ISRN Microbiol. 2013;2013;749629. doi: 10.1155/2013/749629.
- 11. Umman P, Philip T, Babu HG, Thomas P. Age and gender based study of urine microscopy in children and adolescents: a retrospective study. Int Surg J. 2022 Feb;9(2):293–7. doi: 10.18203/2349-2902.isj20220276.
- 12. Nicolle LE. Urinary tract infections in the older adult. Clin Geriatr Med. 2016 Aug;32(3):523–38. doi: 10.1016/j.cger.2016.03.002.
- 13. Lashgari N, Noroozi-Aghideh A, Goharimoghaddam K, Goudarzi L, Bahmani S. Frequency and antimicrobial resistance pattern of pathogens implicated in urinary tract infection at a hospital in Tehran. Ann Mil Health Sci Res. 2015;13(2).
- 14. Ben Ashur A, El Magrahi H, Elkammoshi A, Alsharif H. Prevalence and antibiotics susceptibility pattern of urine bacterial isolates from Tripoli Medical Center (TMC), Tripoli, Libya. Iberoam J Med. 2021;3(3):221–6. doi: 10.53986/ibjm.2021.0034.
- 15. Hantoosh SM. The prevalence of bacterial urinary tract infections among school-age children. J Med Genet Clin Biol. 2024;1(5):44–53.
- 16. Sapkota A, Timilsina M, Timsina MP, Sharma PR, Jaiswal S. Prevalence of urinary tract infection among school going adolescent female. 2020.
- 17. Islam OK, Islam I, Saha O, Rahaman MM, Sultana M, Bockmühl DP, et al. Genomic variability correlates with biofilm phenotypes in multidrug resistant clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2023 May 13;13(1):7867. doi: 10.1038/s41598-023-35083-x.
- 18. Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics (Basel). 2021 Sep;10(9). doi: 10.3390/antibiotics10091134.

https://razi.edu.ly/rmj/index.php/hm

- 19. Manandhar S, Karn D, Shrestha MR, Shakya J, Singh A. Biofilm formation, methicillin resistance and SCCmec types among Staphylococcus aureus isolated from clinical samples from a tertiary care hospital, in Nepal. BMC Infect Dis. 2025 Jun 3;25(1):534. doi: 10.1186/s12879-025-1351-8.
- 20. Vintilă C, Coșeriu RL, Mare AD, Ciurea CN, Togănel RO, Simion A, et al. Biofilm formation and antibiotic resistance profiles in carbapenemase-producing Gram-negative rods—a comparative analysis between screening and pathological isolates. Antibiotics (Basel). 2024 Aug;13(8). doi: 10.3390/antibiotics13080688.
- 21. Macias-Valcayo A, Aguilera-Correa JJ, Broncano A, Parron R, Auñon A, Garcia-Cañete J, et al. Comparative in vitro study of biofilm formation and antimicrobial susceptibility in Gram-negative bacilli isolated from prosthetic joint infections. Microbiol Spectr. 2022 Aug;10(4):e0085122. doi: 10.1128/spectrum.00851-22.
- 22. Naidoo A, Kajee A, Mvelase NR, Swe-Han KS. Antimicrobial susceptibility of bacterial uropathogens in a South African regional hospital. Afr J Lab Med. 2023;12(1):1920. doi: 10.4102/ajlm.v12i1.1920.
- 23. Mahjoub AA, El Ashur EA, Bakeer AM. Prevalence and antibiotic susceptibility of common urinary bacterial isolates from out-patients in Misurata, Libya. MMSJ. 2023;5(2):12–21.
- 24. Shrestha LB, Bhattarai NR, Khanal B. Comparative evaluation of methods for the detection of biofilm formation in coagulase-negative staphylococci and correlation with antibiogram. Infect Drug Resist. 2018;11:607–13. doi: 10.2147/IDR.S159764.