

Original article

Detection of Types and Contents of Natural Radionuclides and Hazard Indexes in Vegetable and Soil Samples at Some Al-Marj City Locations

Hamad Hasan^{*1}, Enaam Mohamed², Adel Abdulathim³

¹Chemistry Department, Faculty of Science, Omar Al-Mukhtar University, Libya

²Chemistry Department, Faculty of Education (Al-Marj), Benghazi University, Libya

³Medical Technology Department, Higher Institute of Science and Technology, Cyrene, Libya

Corresponding email. hamad.dr@ou.edu.ly

Abstract

This study aims to evaluate the natural radioactivity concentrations of naturally occurring in the environment associated with the ^{26}Ra , ^{238}U , and ^{232}Th decay chains and the long lived natural occurring radionuclide ^{40}K in vegetables and soil samples. The samples were collected from different locations around Al MARJ region (north eastern side of Libya) to elevate natural radioactivity. The analysis of the samples was done by using Sodium iodide detectors. The analysis demonstrates that the measured activity concentrations for the soil samples of ^{226}Ra , ^{238}U , ^{232}Th , and ^{40}K were (60.47 to 35.37), (51.31 to 37.29), (68.94 to 28.43), and (271.36 to 53.72) Bq/Kg, respectively. While the average activity concentrations for vegetable samples of ^{226}Ra , ^{238}U , ^{232}Th , and ^{40}K were (86.06 to 32.37), (91.85 to 38.87), (114.26 to 60.60), and (280.41 to 66.92) Bq/kg, respectively. The radium equivalent activity (Raeq) in the soil and vegetable samples was calculated, and the results recorded that the values ranged between 132.79 and 87.13 Bq/kg, and 227.18 to 124.19 Bq/kg respectively. The values of external hazard index, gamma radiation level index (I_γ), and I-alpha (I_α) are close to unity for all samples, which was investigated. The absorbed dose rate, annual effective dose, and cancer risk factor were determined for all samples. The study concluded that the highest activity concentration in soil and vegetable samples is higher than the worldwide average as reported by the UNSCEAR.

Keywords. Radioactive Nuclides, Vegetable, Soil, Libya.

Received: 15/11/25

Accepted: 16/01/26

Published: 22/01/26

Copyright Author (s)

2026. Distributed under Creative Commons CC-BY 4.0

Introduction

Radionuclides are found throughout natural and it exists in the soil and vegetables. These radionuclides have half-lives that are approximately Earth's age or older (i.e., about 4 to 5 billion years) [1]. Natural radioactive decay series such as ^{238}U and ^{232}Th as well as singly occurring radionuclides such as ^{40}K exist in the earth and atmosphere in varied levels. The radioactivity present on air or in the agricultural land and in soil may transfer to the crops grown on it. It happens, however, that an amount of some radioactive elements finds their way into human bodies [2]. Generally, the plants (vegetables) may cause accumulation of radionuclides in their organs, which may additionally rely on the chemical and physical properties of the soil. So, there may be multiplied risk to human population via food chain. The main sources of components from the environment to plants are: air, water and also the soil [3].

There are two ways for transferring of the radionuclides present in the environment in to plants by indirect and direct methods. The first method (indirect) happens by uptake from soil through roots. When plants are grown in the contaminated soil, the radioactivity is transferred from the soil to the roots and then in shoots plant. In the end, the radioactivity is shifted to the human diet. These radionuclides will get transferred into plants together with the nutrients throughout mineral uptake and accumulation in varied components and even reach edible portions [4]. The second method (direct) happens by absorption through aerial elements of the plants. Presence of emission (alpha, beta and gamma) in plant organs. Naturally the radioactive contamination of the soil affects the plants, animals and human beings living in the given area directly as the radioactive isotopes accumulated in the soil, cause direct radiation exposure [5].

Soil and vegetables are recognized as one of the major pathways for the transfer of radionuclides to human beings. The study of natural radioactive elements was determined in samples of fishes and soils at different locations of Libya, most of these studies recorded high values of these elements [5-7]. The measuring of hazard compounds took place in different samples of many studies [8-56]. The main aims of this study was to Detect and Estimate the types and quintiles of Natural radioactive nuclides in some vegetables and soil samples collected from Al-MARJ region, Libya.

Methods

Description of the Studied Area

The area of study is located in the northern east of Libya at (ALMarj region, Libya) which has a semi-humid environment with an average annual rainfall of around 382 mm/year. The farms are spread out over a large region. The zone has been heavily impacted by pollutants from agricultural chemicals and some human activities. The soil classified under the Rendolls class, which is rich in calcium carbonate and is immature, with no deep profile on the prospects for well-known for farmers' inclination toward irrigated agriculture, which has prompted the increased use of fertilizers to boost soil fertility, as well as the increased use of chemical pesticides for pest control, which has expanded owing to the growth of irrigated agriculture. Ten Samples locations were selected in this study including: (line 16 farms, Old ALMarj, New Al-Marj, Almhaadi, Farzogha- Agsenta -Zawet ALgosor- Awiliyah- Al-Ahmada and AL slayaya), Figure 1.



Figure 1. The study locations.

Sampling and Preparation of Samples

Vegetable Samples

The vegetable samples were collected randomly from several locations at some farms, During (2021) which covering about 100 km². Five species of vegetable types (Cucumber, Zucchini, Bean, Cabbage and Peas) selected in this study. These vegetable samples were product in five locations as shown in Table (1) Approximately (2 kg) of each vegetable samples were taken; the studied samples are shown in the Table (1). Also, ten locations were selected for soil samples, where the samples collected from the locations of vegetable farms in addition to (samples) collected the area around AL-Marj region which not product vegetables at the sampling time. (1Kg) of surface soil samples were collected each farm. Both soil and vegetable samples were protected in plastic bags and transported to the laboratory. Fresh samples were washed with tap water, then by deionized water, air dried and then carefully weighed. The samples were dried after chopped into small pieces. Then dried again in oven at 75 °C for 36 hours, grinded to homogeneous small pieces by using food processor (blender), then grinded to powder and sieved through a 2 mm nylon sieve to obtain a representative sample. and appropriate volume of sample was transferred into specimen cans.

Table 1. Vegetable sample's locations:

Vegetable	Location
Cucumber	New ALMarj
Zucchini	Awiliyah
Bean	Old ALMarj
Cabbage	Al-Ahmada
Peas	Farzogha

Collection and preparation of the soil samples

Soil samples (about 1 Kg) were collected and transferred into a clean polyethylene bag from the same sites of the vegetable samples (for each vegetable type separately), where ten samples were taken from 0 – 20 cm depth using a

steeliness steel auger and pooled together to form composite sample. The collected soil samples were transported to central laboratory of chemistry at faculty of science (Omar Al-Mukhtar University). The soil samples were air dried in a dry and dust free place at a room temperature of (25 °C) for 5 days, followed by an oven dry at 100 °C for 24 h. The samples were grinded with a pestle to pass through a 2 mm sieve and homogenized. The dried, sieved and homogenized soil samples were finally stored in polyethylene bags and kept in desiccators until digestion and analysis [6-7].

Radioactive elements:

The natural radioactive nuclei were determined by Sodium Iodide (NaI) detector method.

Preparation of Samples of NaI Detector:

Before measured samples by sodium Iodide soil and vegetable samples were dried at the temperature of 95C° for 3 and 4 hours until the moisture was completely removed. The samples were then smashed into fine particles and thoroughly mixed, and passed through a fine mesh sieve (~200 mesh) to obtain composite representative samples. After that weighted the samples are placed in polyethylene bottles of 250 cm³ volume. The bottles were kept airtight for a month before being putting in to NaI spectrometer, in order to secure the secular equilibrium between long-lived radioisotopes ²³⁸U, ²³²Th, and their corresponding daughters. This step is very necessary to ensur the radon gas is confined within the volume and the daughter still also remain in the sample. These samples were placed directly over the detector. The counting time for each sample was 70000 sec. The measured activity concentrations were presented as Bq/kg. Also some radioactivity indexes were calculated according to the following methods [6-7]:

Radium Equivalent Dose (Ra_{eq})

The radium equivalent (Bq/kg) is estimated by weighted sum of activities for radionuclides of ²²⁶Ra, ²³²Th, and ⁴⁰K in sample and it is given by the relation:

$$Ra_{eq} = A_{Ra} + 1.43 A_{Th} + 0.077 A_K$$

Where:

A_{Ra} , A_{Th} and A_K are the activity concentration (Bq./kg) for ²³⁸U, ²³²Th, and ⁴⁰K respectively [5].

External Hazard Index (H_{ex}):

The external hazard index (H_{ex}) due to emitted from gamma ray of the samples to estimate the biological hazard was calculated by the relation:

$$H_{ex} = \frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \leq 1$$

Where: A_{Ra} , A_{Th} and A_K are the activity concentrations for ²²⁶Ra, ²³²Th, and ⁴⁰K in Bq/kg .

Internal Hazard Index (H_{in}):

Internal exposure arises from the inhalation of radon (²²²Rn) gas and its progeny products or ingestion of other radionuclides. Since radon is carcinogenic, it is present in all building materials. Hence for the measurement of radon exposure, the internal hazard index is given as following (Al-Harbi and El -Taher, 2016):

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810}$$

Radiation Level Index (I_γ):

The radiation level index I_γ is used to assessment the hazard level of radionuclides ²³⁸U, ²³²Th, and ⁴⁰K. The radiation level index calculated by using the relation:

$$I_{\gamma} = \frac{A_{Ra}}{150} + \frac{A_{Th}}{100} + \frac{A_K}{1500}$$

Where: A_{Ra} , A_{Th} and A_K are the activity concentrations for ²²⁶Ra, ²³²Th, and ⁴⁰K in Bq/kg [7].

Alpha index (I_α):

The external irradiation, especially radon and its short-lived products are also hazardous to respiratory organs, they emit radioactive alpha particles and attach to aerosols, dust and other particles in the air. As we inhale, radon progeny are deposited on the cells lining the airways where the alpha particles can damage DNA and potentially cause lung cancer.

The excess alpha radiation due to radon inhalation is estimated from the alpha index (I_α), which is defined as following:

$$I_\alpha = \frac{A_{Ra}}{200}$$

The recommended upper limit concentration of ^{226}Ra is 200 Bq/kg which gives $I_\alpha = 1$.

Description of The System:

Sodium iodide scintillation NaI(Tl) detectors using to measure the samples. The detector was insert in the cylindrical lead shield to reduce the background and noise radiation from many natural radionuclides, such as, (^{40}K), decay series, and cosmic rays. The based system of gamma ray spectroscopy consists of a NaI (Tl) detector, high voltage power supply, Multi-Channel Analyzer (MCA box) and Sensor Cassy. The gamma ray spectra data was analyzed by using Cassy Lab software on a PC.

Results

For the analysis of samples in the (soil and vegetables), the background measurement is very important. The background radiation spectrum of the ionized water is obtained for two days (14,0000 sec) and the other samples for one day (70000 sec). Different sources contribute to background radiation around the detection environment. This includes ambient air for the detector, shielding and electronic components of the detector itself.

Result of radioactive nuclides from NaI detector Spectrometer:

For all samples the activity concentration of ^{226}Ra determined from photo peak 186.2 KeV. The activity concentration of ^{238}U series determined ^{214}Pb photo peak (295.2 and 351.9) KeV and ^{214}Bi (609.3, 768.4, 1120.3, 1238.1, 1377.7 and 1764.5) KeV. Similarly, for ^{232}Th series, the activity concentration determined from ^{228}Ac (92, 209.5, 338.5, 911.1 and 968.9) KeV and ^{208}Tl 583 KeV ^{212}Bi 727.2 KeV. ^{40}K was determined from photo peak 1460 KeV [5-7].

For soil samples the activities of ^{226}Ra , ^{238}U , ^{232}Th and ^{40}K were ranged between (35.37- 60.47), (37.29 – 51.31), (28.43 - 68.94) and (53.72 – 271.36) BqKg $^{-1}$, for ^{238}U , ^{232}Th , ^{226}Ra , and ^{40}K , respectively. The minimum activities in soil samples of ^{226}Ra , ^{238}U , ^{232}Th and ^{40}K were 35.37, 37.29, 28.43 and 53.72 BqKg $^{-1}$, respectively and the maximum values were 60.47, 51.31, 68.94 and 271.36 BqKg $^{-1}$, respectively. The activity concentrations in the vegetable samples were fluctuated in the ranges of (32.37 -86.06), (38.87 – 91.85), (60.60 – 114.26) and (66.92 – 280.41 Bq/Kg) for ^{226}Ra , ^{238}U , ^{232}Th and ^{40}K respectively. For the most samples the activity concentrations of ^{226}Ra for soil, vegetable samples under investigation are higher than those the world's population with average of (32) Bq/Kg(UNSCEAR, 2008), respectively. For ^{238}U the activity concentrations of all samples are higher than the permissible level for all samples under investigation (33 and 20) Bq/Kg and 1 BqL $^{-1}$ [4]

The average activity concentrations of radionuclides (^{232}Th) in soil and vegetable samples (45, 15 Bq/Kg and 0.05 BqL $^{-1}$ for ^{232}Th) are higher than the permissible level, but for ^{40}K the activity are lower than the permissible limits (412, 420 Bq/Kg and 10 BqL $^{-1}$ for ^{40}K) Table (2) and Figures(1-4).

Table 2. The activity concentrations (Bq/kg) of the radionuclides ^{226}Ra , ^{238}U , ^{232}Th and ^{40}K of the investigated samples.

Samples Code	Ra 226	^{238}U	^{232}Th	^{40}K
S1	35.37	37.29	36.66	53.72
S2	44.00	45.99	39.29	271.36
S3	36.39	42.91	59.06	122.25
S4	46.28	42.75	57.82	246.57
S5	52.99	51.31	29.93	104.03
S6	37.21	38.95	28.43	120.42
S7	60.47	44.31	68.94	98.58
S8	51.76	49.29	42.89	165.50
S9	45.70	39.10	28.76	64.80
S10	56.65	47.98	44.52	162.00
P.L	32	33	45	412
V11	44.41	50.64	64.69	280.41
V12	32.37	38.87	60.60	66.92

V13	53.75	55.27	114.26	123.71
V14	86.06	91.85	85.29	248.74
V15	57.01	54.47	84.06	150.55
P.L	50	20	15	420

P.L = Permissible level

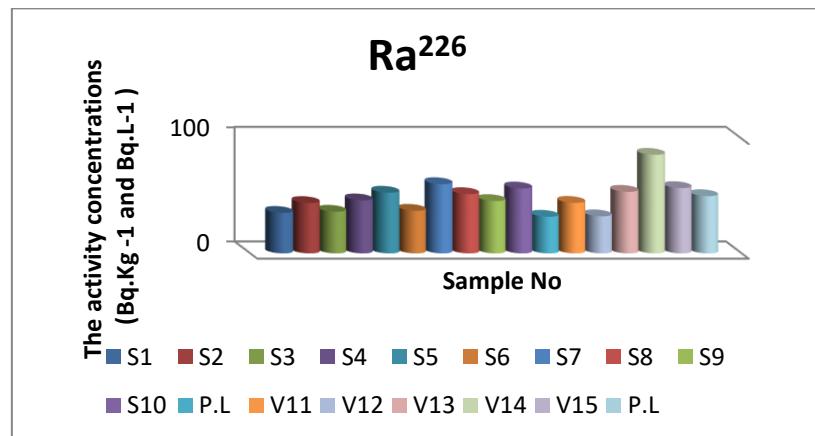


Figure 1. Comparative of the contents of ²²⁶Ra activity between the soil and vegetable samples.

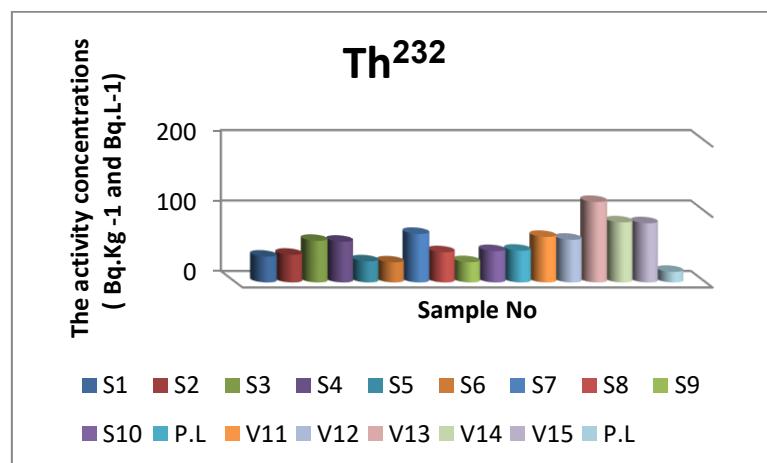


Figure 2. Comparative of the contents of ²³²Th activity between the soil and vegetable samples.

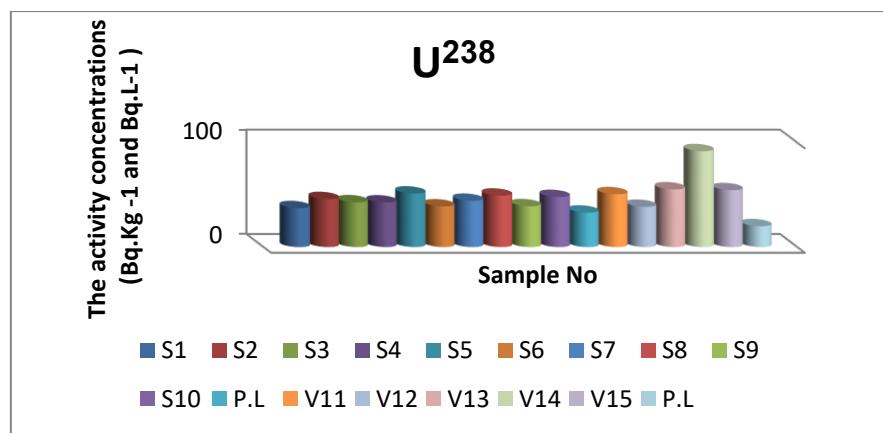
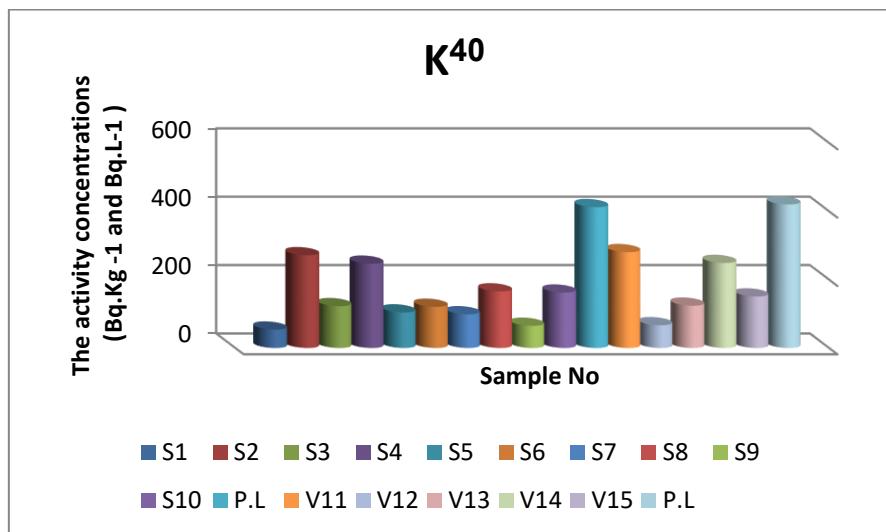



Figure 3. Comparative of the contents of ²³⁸U activity between the soil and vegetable samples.

Figure 4. Comparative of the contents of ^{40}K activity between the soil and vegetable samples.

Radium Equivalent (Ra_{eq})

The radium equivalent values of all samples were presented in Table (3), for the soil samples the values were ranged (87.13 – 132.79) BqKg^{-1} . The radium equivalent for vegetable samples were ranged between (124.19 – 227.18) BqKg^{-1} , Figure (5). The radium equivalent values for all samples are lower than the permissible limit level of (370 BqKg^{-1}),[4].

Internal Hazard (H_{in})

The internal hazard values obtained in Table (2) and Figure (6). The internal hazard of soil samples in ranged from (0.34 – 0.61). The external hazard values of vegetable samples were ranged between (0.42-0.85) mGy.y^{-1} . The internal hazard values for all samples are lower than unity of permissible level of (1),[4].

External Hazard (H_{ex})

The external hazard values obtained in Table (3) and Figure (6). The external hazard of soil samples in ranged from (0.23 – 0.40). The external hazard values of vegetable samples were ranged between (0.34- 0.61) mGy.y^{-1} . The external hazard values for all samples are lower than unity of permissible level of (1),[4].

External Gamma Radiation ($I\gamma$)

The calculated $I\gamma$ values for all samples were shown in Table (3) and Figure (5&6). The values of soil samples were ranged from (0.61 – 1.16). The calculated $I\gamma$ values of vegetable samples were ranged between (0.87- 1.59). The calculated values of external gamma radiation for most soil and vegetable samples were higher than the international values ($I\gamma=1$).

Alpha Index

The values of $I\alpha$ calculated from the concentrations of ^{226}Ra are presented in Table (3) and Figure (5&6). However, the alpha index in soil samples has been found to vary from ranged (0.18 – 0.30). In addition for the vegetable samples the values ranged (0.16 – 0.43) . It is observed that all values of $I\alpha$ are below the maximum permissible value of ($I\alpha=1$).

Excess Lifetime Cancer Risk (ELCR):

Table (3), shown the cancer risk factor ELCR for all samples. The values of soil samples obtained were ranged from (0.15-0.29). The values for vegetable samples were ranged between (0.21 – 0.40). The values for some samples are higher than the international values of 0.29×10^{-3} .

Table 3. The values of radium equivalent, internal hazard, external hazard, gamma index and alpha index.

Samples code	R _{aeq}	H _{in}	H _{ex}	I γ	I α	ELCR $\times 10^{-3}$
S1	91.93	0.34	0.25	0.64	0.18	0.16
S2	121.08	0.45	0.33	0.87	0.22	0.22
S3	130.25	0.45	0.35	0.91	0.18	0.23
S4	147.96	0.52	0.40	1.05	0.23	0.26
S5	103.80	0.42	0.28	0.72	0.26	0.18
S6	87.13	0.34	0.23	0.61	0.19	0.15
S7	166.65	0.61	0.45	1.16	0.30	0.29
S8	125.84	0.48	0.34	0.88	0.26	0.22
S9	91.82	0.37	0.25	0.63	0.23	0.16
S10	132.79	0.51	0.36	0.93	0.28	0.23
V11	158.51	0.55	0.43	1.13	0.22	0.28
V12	124.19	0.42	0.34	0.87	0.16	0.21
V13	226.68	0.76	0.61	1.58	0.27	0.39
V14	227.18	0.85	0.61	1.59	0.43	0.40
V15	188.81	0.66	0.51	1.32	0.28	0.33
P.L	370	1	1	1	1	0.29

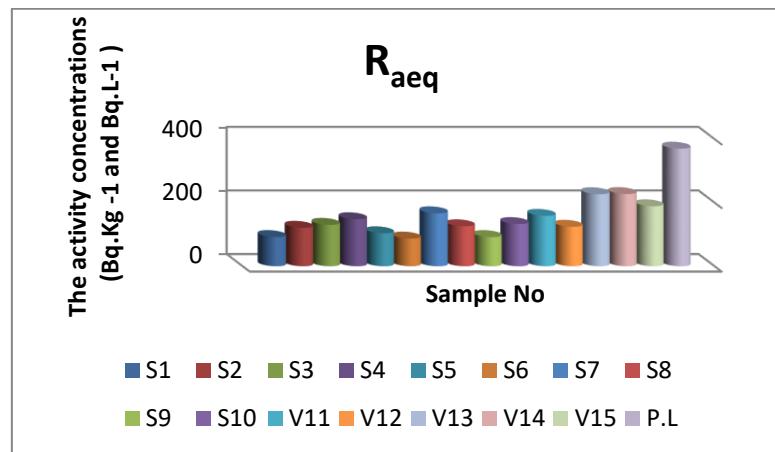


Figure 5. The values of Ra_{eq} of the studied samples.

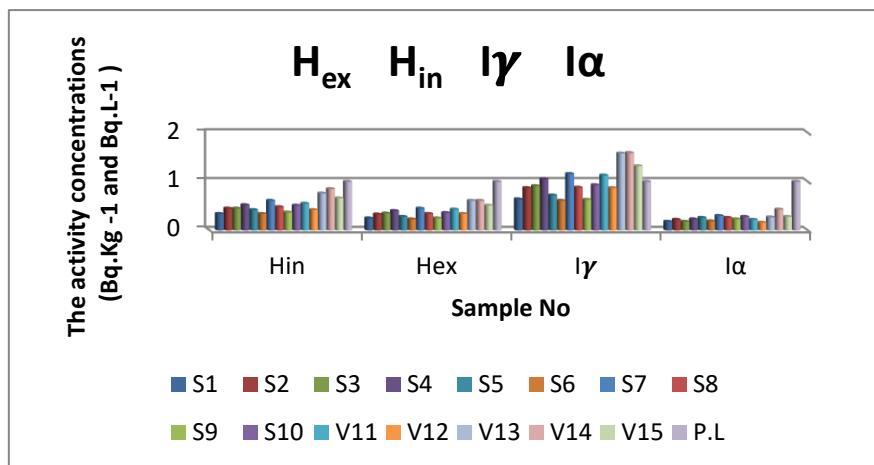


Figure 6. The values of Hex, Hin, I γ and I α of the studied samples.

Discussion

It was reported that some of the toxic elements interact with some compounds to produce many new compounds that have different medical applications [57-67]. In Libya, many studies were carried out on different samples to evaluate

the contents of hazardous materials [68-100]. In this study, the results showed that the contents of radioactive nuclides were varied between the studied samples. Uranium, thorium, and radium are radioactive elements that originate naturally in the soil. Uranium is the most abundant in the earth's crust and also tends to spread during the soil because the rocks in the outer crust have suffered from weathering processes (water, air, plants) as a result of these processes and different factors other the soil is formed, the soil pollution depends on relevant information transport and disposal operations away from the site of contamination, Because the accumulation of radioactive material and its movement depends on the interaction of materials and compounds with the hard part of the soil and the type of this reaction reflects the soil's ability to retain radioactive materials and on the other hand the rate of fall rainfall, quantity of irrigation water, type of cultivated plant and soil management processes lead to the movement of radioactive contaminants into groundwater or their transfer to plants or other medium such as water and air, radioactivity includes soil models of radionuclides, which belong to the ^{238}U series and the most important of radioactive element is ^{226}Ra , [101].

Radiation pollution in groundwater is due to radium resulting from the melting of underground reservoir rocks, and ^{222}Ra , which is highly soluble in water. There are radionuclides produced by the decomposition of uranium, thorium, granitic and sedimentary rocks, which produce radioactive materials. Sedimentary rocks form the late uranium-rich Cretaceous rocks, which are spread over a wide area of North Africa and the Middle East. The high concentrations of uranium, radon, and radium in drinking water cause genetic mutations, deformed births, and serious cancerous diseases. Most of them need hundreds of years to have no negative impact on human life. The topography of the topsoil of the aquifer has a large role in hiding and increasing pollution in groundwater [102]. The soil's own ability to purify polluted water is related to soil quality and its properties that allow or impede the movement of pollutants into groundwater. There are highly purified soils that contribute significantly to water purification from their pollutant before they reach ability to groundwater [102].

The higher average levels of ^{238}U than average global values in the studied area may be due to the use of phosphate fertilizers required to treat soil depletion of natural nutrients removed through agriculture and erosion. This fertilizer is composed of phosphate rocks that contain a high concentration of uranium. Elevated levels of ^{232}Th indicate the presence of carbonate and monazite rocks, which are known to be rich in these radionuclides. The high levels of ^{40}K are due to the fact that the soil samples were collected from agricultural land where there is application of some potassium-rich inorganic fertilizers and other chemicals used to promote crop production. The variations of radioactivity elements in soil samples depend primarily on the geological structure and geographical conditions, such as the location of the study area, which can significantly contribute to the presence of radioactive elements. Therefore, the high percentages of these nuclei in the soil also affect the concentrations in vegetable samples. The concentrations of radionuclides of ^{226}Ra , ^{238}U , and ^{232}Th (ppm) and ^{40}K for all samples at the Almarj area. The use of some Fertilizers and pesticides may be affecting the distribution of radioactivity, where there is a relative increase in the contents of vegetables and soils collected from the same farms.

Conclusion

According to the results recorded in this study, the levels of radioactive nuclides were detected in all samples as: ^{238}U , ^{40}K , ^{232}Th , and ^{226}Ra . This study would help to reduce the risk to human health that originates from highway pollution. But further extensive sampling is necessary to include similar study areas, and further research concerning contamination of environmental.

Acknowledgement

Special thanks for staff members of physics department, Faculty of Science, Omar Al-Mukhtar University for their helping during the analysis of radioactive elements.

Conflict of interest. Nil

References

1. Raymond ML. Understanding Radioactive Waste. Columbus. (OH): Battelle Press, 4th Edition.1994".
2. U.S. Environmental Protection Agency Radiation Protection Program- Uranium, 2015.
3. Wright SM, Howard BJ, Barnett CL, Stevens P, Absalom JP. Development of an approach to estimating mid- to long term critical loads for radio cesium contamination of cow milk in western Europe. Framework Programme 1994-1888 of the European Atomic Energy Community. Report. Institute of Terrestrial Ecology.1998.

4. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Effects of ionizing radiation, Report to the General Assembly, with Scientific Annexes. Vol. 1. United Nations Publications,2008.
5. Hamad R, Ikraiam F, Hasan H. Determination of specific natural radionuclides in the bones of some local fish commonly consumed from the eastern Libyan coast. *J Rad Nucl Appl.* 2023;8(3):283-9.
6. Sroor AT, Walley El-Dine N, El-Bahi SM, Hasa HMA, Ali JM. Determination of radionuclides levels and absorbed dose for the, rock, plant and water in gondola- Libya. *IOSR J Appl Phys.* 2018;10(4):40-9.
7. Hasan H, Ammhmmid R, Khatab H, Ali J, Al kaseh A. Using gamma ray radiation to estimate the types and contents of radioactive nuclides in some ported sugar samples, Libya. *AlQalam J Med Appl Sci.* 2025;8(3):1795-803.
8. El-Mehdawe MF, Eman KS, Hamad MIH. Heavy metals and mineral elements contents of leaves and stems for some herbal plants at AL-Gabal AL-Akhder region. *Chem Sci Rev Lett.* 2014;3(12):980-6.
9. Hamad MIH, Aaza IY, Safaa SHN, Mabrouk MS. Biological study of transition metal complexes with adenine ligand. *Proc.* 2019;41(1):77.
10. Hasan JA, Hasan HMA. Potential human health risks assessment through determination of heavy metals contents in regularly consumed yogurt in Libya. *World J Pharm Pharm Sci.* 2024;13(12):100-12.
11. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. *Arab J Chem.* 2016;9(S2):S1590-6.
12. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad IH. Heavy metals accumulation in sediments of Alexandria coastal areas. *Bull Fac Sci.* 2012;47(1-2):12-28.
13. Mamdouh SM, Wagdi ME, Ahmed MA, Hamad MIH. Chemical studies on Alexandria coast sediment. *Egypt Sci Mag.* 2005;2(4):93-102.
14. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad MIH. Distribution of different metals in coastal waters of Alexandria, Egypt. *Egypt Sci Mag.* 2010;7(1):1-19.
15. Mohamed AE, Afnan SA, Hamad MA, Mohammed AA, Mamdouh SM, Alaa RE, et al. Usage of natural wastes from animal and plant origins as adsorbents for removal of some toxic industrial dyes and heavy metals in aqueous media. *J Water Process Eng.* 2023;55:104192.
16. Mohamed HB, Mohammed AZ, Ahmed MD, Hamad MAH, Doaa AE. The heavy metal pollution and associated toxicity risk assessment in Ajdabiya and Zueitina, Libya. *Sci J Damietta Fac Sci.* 2024;14(1):16-27.
17. Nabil B, Hamad H, Ahmed E. Determination of Cu, Co and Pb in selected frozen fish tissues collected from Benghazi markets in Libya. *Chem Methodol.* 2018;2:56-63.
18. Wesam FAM, Hamad MAH. Detection of heavy metals and radioactivity in some bones of frozen chicken samples collected from Libyan markets. *Int J Adv Multidiscip Res Stud.* 2023;3(3):761-4.
19. Wesam FAM, Hamad MAH. Study accumulation of minerals and heavy metals in *Ulva* algae, *Cladophora*, *Polysiphonia* and *Laurencia* algae samples at eastern north region of Libya coast. *GSC Biol Pharm Sci.* 2023;23(03):147-52.
20. Citrine E, Hamad H, Hager Af. Contents of metal oxides in marine sediment and rock samples from eastern Libyan coast, utilizing X-ray method. *AlQalam J Med Appl Sci.* 2015;1(1):1316-21.
21. Hanan MA, Hamida E, Hamad MAH. Nitrogen, phosphorus and minerals (Sodium, Potassium and Calcium) contents of some algae's species (*Anabaena* and *Spirulina platensis*). *Int J Curr Microbiol App Sci.* 2016;5(11):836-41.
22. Mardhiyah F, Hamad H. Assessment of the contamination by heavy metals in Al-Fatayeh Region, Derna, Libya. *AlQalam J Med Appl Sci.* 2025;8(3):1081-91.
23. Abdelrazeg A, Khalifa A, Mohammed H, Miftah H, Hamad H. Using melon and watermelon peels for removal of some heavy metals from aqueous solutions. *AlQalam J Med Appl Sci.* 2025;8(3):787-96.
24. Abdul Razaq A, Hamad H. Estimate contents and types of water well salts by Palmer Roger model affecting corrosion of Al-Bayda city (Libya) network pipes. *AlQalam J Med Appl Sci.* 2025;8(3):744-53.
25. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation, X-ray fluorescence scanning, and flame photometer analysis for sediments and rock samples of Al-Gabal Al-Akhder coast region (Libya). *IOSR J Appl Chem.* 2021;14(4):20-30.
26. ALambarki M, Hasan HMA. Assessment of the heavy metal contents in air samples collected from the area extended between Albayda and Alquba cities (Libya). *AlQalam J Med Appl Sci.* 2025;8(3):695-707.
27. Al-Nayyan N, Mohammed B, Hamad H. Estimate of concentrations of heavy metals in the and some plant samples collected from (near and far away) of main road between Al-Bayda city and Wadi Al-Kouf region. *AlQalam J Med Appl Sci.* 2025;8(3):816-26.
28. Hasan HMI. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria [Doctoral dissertation]. [Alexandria, Egypt]: Alexandria University; 2006.
29. Hamad MAH, Hager AA, Mohammed EY. Chemical studies of water samples collected from area extended between Ras Al-Halal and El Haniea, Libya. *Asian J Appl Chem Res.* 2022;12(3):33-46.
30. Hamad M, Mohammed AA, Hamad MAH. Adsorption and kinetic study for removal some heavy metals by use in activated carbon of sea grasses. *Int J Adv Multidiscip Res Stud.* 2024;4(6):677-85.

31. Hamad MAH, Hamad NI, Mohammed MYA, Hajar OAA, Al-Hendawi RA. Using bottom marine sediments as environmental indicator state of (Tolmaitha – Toukra) region at eastern north coast of Libya. Sch J Eng Tech. 2024;2(14):118-32.
32. Hamad MIH. Heavy metals distribution at coastal water of Derna city (Libya). Egypt J Aquat Res. 2008;34(4):35-52.
33. Hamad MIH, Mojahid ul Islam. Concentrations of some heavy metals of Al-Gabal Al-Akhdar Coast Sediment. Arch Appl Sci Res. 2010;2(6):59-67.
34. Hamad MAH, Amira AKA. Estimate concentrations of some heavy metals in some shoes polish samples. EPH Int J Appl Sci. 2016;2(2):24-7.
35. Hamad MAH, Hussien SSM, Basit EEM. Accumulation of some heavy metals in green algae as bio indicators of environmental pollution at Al-Hanizia region: Libya coastline. Int J Adv Multidiscip Res Stud. 2024;4(5):188-90.
36. Hamad MIH, Ahmed MA. Major cations levels studies in surface coastal waters of Derna city, Libya. Egypt J Aquat Res. 2009;35(1):13-20.
37. Hamad MIH, Masoud MS. Thermal analysis (TGA), diffraction thermal analysis (DTA), infrared and X-rays analysis for sediment samples of Toubrouk city (Libya) coast. Int J Chem Sci. 2014;12(1):11-22.
38. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. J Rad Nucl Appl. 2024;9(1):47-51.
39. Hasan HAH. Estimate lead and cadmium contents of some archeological samples collected from ancient cities location (Cyrene and Abolonia) at Al-Gabal Al-Akhder Region, Libya. Univ J Chem Appl. 2021;12(21):902-7.
40. Hasan H, El-maleh C. Evaluation of some heavy metal levels in tissue of fish collected from coasts of susa region, libya. Attahadi Med J. 2025;1(1):118-22.
41. Balal A, Obid M, Khatab H, Hasan H. Determination of lead and cadmium marine water and crabs (*pachygrapsus marmoratus*) from tolmita coast, Libya. AlQalam J Med Appl Sci. 2025;8(3):1670-7.
42. Hamad IH, Nuesry MS. Poly cyclic hydrocarbons levels in some fishes tissues collected from Derna City (Libya) Coast. In: International conference on chemical, agricultural and medical sciences; 2014 Dec 4-5; Antalya, Turkey; 2014. p. 52-6.
43. Hamad MAH, Mounera AAE, Baseet ESM, Eman E, Al-Badri M. Identification and detection aromatic and aliphatic hydrocarbons in *Epinephelus Marginatus* fish samples collected from Benghazi coast. Int J Adv Multidiscip Res Stud. 2023;6(3):107-13.
44. Mohammed A, Hamad MAH, Mounera AAE, Eman IHE. Extraction and identification of aliphatic hydrocarbons in marine sediment samples at Benghazi city and Dyriana town coasts (Libya). J Res Humanit Soc Sci. 2023;11(10):168-74.
45. Hasan MAH, Muftah HS, Abdelghani KA, Saad SI. Poly aromatic hydrocarbon concentrations in some shell samples at some Tobrouk city coast regions: could the oil industry be significantly affecting the environment. Ukr J Ecol. 2022;12(3):21-8.
46. Habel AMA, Mohamed NIH, Mohammed MA, Hamad MAH. Levels and sources of aliphatic and polycyclic aromatic hydrocarbons in blue runner fish from Benghazi coast, Libya. Afr J Biol Sci. 2024;6(3):1-10.
47. Hasan HMI, Mohamad ASA. A study of aliphatic hydrocarbons levels of some waters and sediments at Al-Gabal Al-Akhder coast regions. Int J Chem Sci. 2013;11(2):833-49.
48. Salem GM, Aljidaemi FF, Hwisa SA, Hamad MIH, Zaid AA, Amer IO. Occupational exposure to benzene and changes in hematological parameters in East Tripoli, Libya. Nanotechnol Percept. 2024;20(S5):358-64.
49. Habil Z, Ben arous N, Masoud N, Hasan H. Using GC-mass method for determination hydrocarbon compounds in some vegetable samples at Derna city, Libya. Libyan Med J. 2025;17(3):374-83.
50. Hasan H, Habil Z, Ben arous N. Estimate the types and contents of phenolic acid in *C.Paviflorus lam* and *C.salviifolius L* plants growing at Al -Gabal Al-hder regions. AlQalam J Med Appl Sci. 2025;8(3):1646-56.
51. Zeyadah MA, Bahnasaway MH, Deedah AM, El-Emam DA, Hamad MA Hasan. Evaluation of the contents of aliphatic and aromatic hydrocarbons in sediment from Zwwitina harbor coast (Libya), an indicator of petroleum pollution. Egypt J Aquat Biol Fish. 2023;27(6).
52. Hasan H, Abdelgader I, Emrayed H, Abdel-Gany K. Removal of the medical dye safranin from aqueous solutions by sea grasses activated carbon: a kinetic study. AlQalam J Med Appl Sci. 2025;8(3):428-34.
53. Hasan HMA, Alhamdy MA. Adsorption and kinetic study for removal some heavy metals by using activated carbon of sea grasses. Int J Adv Multidiscip Res Stud. 2024;4(6):677-85.
54. Almadani EA, Hamad MAH, Kwakab FS. Kinetic study of the adsorption of the removal of bromo cresol purple from aqueous solutions. Int J Res Granthaalayah. 2019;7(12):1-10.
55. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. Arab J Chem. 2016;9(S2):S1590-6.
56. Alfutisi H, Hasan H. Removing of thymol blue from aqueous solutions by pomegranate peel. EPH Int J Appl Sci. 2019;1(1):111-9.
57. Ahmed ONH, Hamad MAH, Fatin ME. Chemical and biological study of some transition metal complexes with guanine as ligand. Int J New Chem. 2023;10(3):172-83.

58. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somia MAE. Synthesis, characterization and antibacterial applications of compounds produced by reaction between Barbital with Threonine, glycine, lycine, and alanine. *Afr J Biol Sci.* 2024;6(4):1-10.

59. Emrayed H, Hasan H, Liser R. Corrosion inhibition of carbon steel using (Arginine -levofloacin-metal) complexes in acidic media. *AlQalam J Med Appl Sci.* 2025;8(3):1633-40.

60. Hasan S, Abduljalil O, Mohamed F, Hasan H. Detection of residual pesticides (Imidacloprid, Aldicarb, Metalaxyl, Cypermethrin, Chlorpyrfos, DDA, and Endrin) in peach Samples collected from Jabal al Akhder farma, Libya. *AlQalam J Med Appl Sci.* 2025;8(4):2099-2106.

61. Mohamed FH, Salah MIH, Omuthum A, Hasan Hamad. Sensitive and rabid method to estimate residual pesticides in some local and imported apple cultivars collected from eastern north side of Libya. *Int J Adv Multidiscip Res Stud.* 2023;3(6):100.

62. Hamad MIH, Yahiya AI, Hassan SS, Salama MM. Biological study of transition metal complexes with adenine ligand. *Proceedings.* 2019;41(1):77.

63. Habib IH, Idres AMA, Hasan HMI. Synthesis, Infrared (IR), Thermal Gravimetric Analysis (TGA) Characterization and Antibacterial Activity of some Amino Acids Complexes. *Chem Sci Rev Lett.* 2014;3(12):1303-16.

64. Hasan HMA, Khalid HAA, Abdulsayid F. Infrared (IR) charactizations and physicochemical properties of Schiff base compound obtained by the reaction between 4-hydroxy-3-methoxy benzaldehyde and 2-amino-3-methylbutanoic acid. *J Res Pharm Sci.* 2021;7:8-12.

65. Salam MM, Moussa SF, Hasan HA. Preparation, Characterization and Antibacterial Activities of Metal complexes with Tyrosine Ligands. *Egypt J Chem.* 2023;66(10):1-7.

66. Zawia A, Najar AM, Abdusalam AAA, Aeyad T. Synthesis, Characterization, Biological Screening and Molecular Docking of New Schiff Base and Its Mononuclear Complexes with Pb²⁺, Cd²⁺, Zn²⁺ and Cu²⁺. *J Pharm Appl Chem.* 2023;8(1):1-9.

67. Hasan HMA, Elmagbari F, Othman A, Hammouda AN. Chemical and Biological Study of Some Transition Metal Complexes with Guanine as Ligand. *Int J New Chem.* 2023;10(3):172-83.

68. Hasan HMA, Al-Warad Y. Synthesis, physical properties, Infrared (IR) analysis and anti-fungi activity of some Valine and metal ion Complexes. *Int J Multidiscip Sci Adv Technol.* 2021;1:246-54.

69. Al-Awjali K, Abdulsalam S, El-Mokasabi F, Akrim Z, Hasan H. Estimate the antioxidant capacity, total phenol contents, mineral concentrations, total carbohydrate of *Capparis spinosa* L. (Kabbar), *Ceratonia siliqua* L (Kharuwib) and *Juniperus phoenicea* L (Arar) plants. *Attahadi Med J.* 2025;2(4):376-84.

70. Abdull-Jalliel H, Sulayman A, Alhoreir M, Hasan H. Antimicrobial effect of some metal concentration on growth of *Staphylococcus* and *Klebsiella* bacteria species. *AlQalam J Med Appl Sci.* 2025;8(3):1646-56.

71. Abdull-Jalliel H, Arous NB, Alhoreir M, Hasan H. Using extracts of Dodder plant and concentrations of some metals as inhibitors for growth of *Pseudomonas* bacteria isolated from some hospital rooms in Derna and Al bayda. *AlQalam J Med Appl Sci.* 2025;8(3):1600-11.

72. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity and GC-MS analysis of chloroform extract of bark of Libyan *Salvia fruticosa* Mill. *Int J Multidiscip Sci Adv Technol.* 2021;1(1):715-21.

73. Aljamal MA, Hasan HM, Al Sonosy HA. Antibacterial activity investigation and anti-biotic sensitive's for different solvents (Ethanol, propanol, DMSO and di El er) extracts of seeds, leaves and stems of (*Laurus azorica* and *Avena sterilis*) plants. *Int J Curr Microbiol Appl Sci.* 2024;13(11):175-90.

74. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and determination of Beta carotene content in carrots and tomato samples collected from some markets at ElBeida City, Libya. *EPH Int J Appl Sci.* 2019;1(1):105-10.

75. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.

76. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. Anti-Cancer, Anti-Inflammatory, Antibacterial, Antifungal, Anti-Oxidant and phytochemical investigation of flowers and stems of *Anacyclus Clavatus* plant extracts. *AlQalam J Med Appl Sci.* 2025;8(3):415-27.

77. Hasan H, Zuhir A, Shuib F, Abdrraba D. Phytochemical investigation and exploring *Citrullus Colocynthis* extracts as antibacterial agents against some gram and negative bacteria species. *AlQalam J Med Appl Sci.* 2025;8(3):392-400.

78. Zeyauallah MD, Naseem A, Badrul I, Hamad MI, Azza SA, Faheem AB, et al. Catechol biodegradation by *Pseudomonas* strain: a critical analysis. *Int J Chem Sci.* 2009;7(3):2211-21.

79. El-Mehdawy MF, Eman KS, Hamad MI, Hasan H. Amino acids contents of leaves and stems for two types of herbal plants (Marjoram and Hybrid tea rose) at AL-Gabal AL-Akhder region. *Der Pharma Chem.* 2014;6(6):442-7.

80. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acid contents of leaves and stems for three types of herbal plants at Al-Gabal Al-Akhder region. *World J Chem.* 2014;9(1):15-9.

81. Hamad MH, Noura AAM, Salem AM. Phytochemical screening, total phenolic, anti-oxidant, metal and mineral contents in some parts of *plantago Albicans* grown in Libya. *World J Pharm Res.* 2024;13(3):1-17.

82. Anees AS, Hamad MIH, Hasan H, Mojahidul I. Antifungal potential of 1,2-4triazole derivatives and rapeutic efficacy of *Tinea corporis* in albino rats. *Der Pharm Lett.* 2011;3(1):228-36.

83. Hasan H, Mohammed M, Haroon A. Determining contents of antioxidants, total phenols, carbohydrate, total protein, and some elements in *Eucalyptus gomphocephala* and *Ricinus communis* plant samples. *Libyan Med J.* 2015;1(1):222-31.
84. Hasan H, Akrim Z, Shuib F, Abdurabha D. Efficiency of *Cynara Cornigera* fruits on antibacterial, antifungal and its phytochemical, anti-oxidant screening. *Libyan Med J.* 2025;3(1):120-8.
85. Hasan H, Sulayman A, Alehrir A. Estimation of amino acid composition, total carbohydrate, and total protein content in *Ballota pseudodictamnus* plant extracts from Al Jabal Al Akhdar Region, Libya. *Libyan Med J.* 2025;3(1):266-71.
86. Hasan H, Hamad A, Abdelsatar W. Evaluation of anti-oxidant capacity, total phenol, metal, and mineral contents of *Ziziphus lotus* plant grown at some regions of AlGabal AlKhder, Libya. *Libyan Med J.* 2025;3(1):137-43.
87. Ben Arous NA, Naser ME, Hamad MAH. Phytochemical screening, anti-bacterial and anti-fungi activities of leaves, stems and roots of *C. parviflorus* Lam and *C. salviifolius* L plants. *Int J Curr Microbiol App Sci.* 2014;13(11):262-80.
88. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of *Helichrysum stoechas* grown in Libya. *Afr J Biol Sci.* 2024;3(6):2349-60.
89. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Evaluation of metal and mineral contents of leaves, stems and roots of *C. Parviflorus* Lam and *C. Salviifolius* L plants growing at Al Ghabal Al-Khder (Libya). *Int J Adv Multidiscip Res Stud.* 2024;4(5):191-4.
90. Hamad MAH, Salem AM. Total carbohydrate, total protein, minerals and amino acid contents in fruits, pulps and seeds of some cultivars of muskmelon and watermelon fruit samples collected from Algabal Alkhder region. *Sch J Appl Med Sci.* 2024;12(1):1-7.
91. Gonaid MI, Ibrahim H, Al-Arefy HM. Comparative chemical and biological studies of *Salvia fruticosa*, *Ocimum basilicum* and *Pelargonium graveolans* cultivated in Al-Jabal Al- Akhdar. *J Nat Prod Plant Resour.* 2012;6(2):705-10.
92. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Men, Origanum and Salvia) growing at Al-Gabal Al-akhder Region-Libya. *Afr J Basic Appl Sci.* 2017;9(3):161-4.
93. Anas FAA, Hamad MAH, Salim AA, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of *Helichrysum stoechas* grown in Libya. *Afr J Biol Sci.* 2024;3(6):2349-60.
94. Haroon A, Hasan H, Wafa AAS, Baset ESM. A comparative study of morphological, physiological and chemical properties of leaves and steam samples of (*E.gomphocephala*) (Tuart) plant growing at coastal (Derna city) and *J Res Environ Earth Sci.* 2024;9(12):10-8.
95. Hamad MAS, Ali AR. Separation and identification speciation of phenolic compounds in fruits and leaves of some medicinal plants (*Juniperus phoenicea* and *Quercus coccifera*) growing at Algabal Al Akhder region, Libya. *Indian J Pharm Educ Res.* 2016;51(3):299-303.
96. Enam FM, Wesam FAM, Hamad MAH. Detection contents of minerals of (Sodium, Potassium and Calcium) and some metals of (Iron, Nickel and Copper) in some vegetable and the samples collected from Al-Marj. *Int J Adv Multidiscip Res Stud.* 2023;5(3):304-9.
97. Hamad MIH, Mousa SR. Synthesis and (IR and TEM) characterization of leaves and stem nanoparticles of *Artemisia* plant: comparative study for evaluation of anti-bacterial efficiency. *Int J Adv Multidiscip Res Stud.* 2024;4(5):195-9.
98. Elsalhin H, Abobaker HA, Hasan H, El-Dayek GA. Antioxidant capacity and total phenolic compounds of some algae species (*Anabaena* and *Spirulina platensis*). *Sch Acad J Biosci.* 2016;4(10):782-6.
99. Alaila AK, El Salhin HE, Ali RF, Hasan HM. Phytochemical screening of some herbal plants (Men, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci.* 2017;8(4):5500-3.
100. Hasan H, Mariea FFE, Eman KS. Contents of some chemical compounds of leaves and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH Int J Appl Sci.* 2014;6(3):1-8.
101. Al-Hawas I A. Irrigation water quality evaluation of Al-Hassa springs and its predictive effects on soil properties, *Pakistan Journal of Biological Sciences.* 2002, 5 (6): pp. 651-655.
102. Ewieda EA, Hamza MS, Ali AIM, Hamed MA. Distribution of uranium in some water and soil at different locations in the Nile Delta, Egypt. 4th Intern. Conf. On Geochemistry, Alex. Univ., Egypt. 1999 , (369-381).